NiCad and NiMH batteries are amongst the hardest batteries to charge. Whereas with lithium ion and lead acid batteries you can control overcharge by just setting a maximum charge voltage, the nickel based batteries don't have a "float charge" voltage. So the charging is based on forcing current through the battery. The voltage to do this is not fixed in stone like it is for the other batteries.
This makes these cells and batteries especially difficult to charge in parallel. This is because you can't be sure that each cell or pack is the same impedance (or resistance), and so some will take more current than others even when they are full. This means that you need to use a separate charging circuit for each string in a parallel pack, or balance the current in some other way, for example by using resistors of such a resistance that it will dominate the current control.
The coulometric charging efficiency of nickel cadmium is about 83% for a fast (C/1 to C/0.24) charge, and 63% for a C/5 charge. This means that at C/1 you must put in 120 amp hours in for every 100 amp hours you get out. The slower you charge the worse this gets. At C/10 it is 55%, at C/20 it can get less than 50%. (These numbers are just to give you an idea, battery manufacturers differ).
When the charge is complete oxygen starts being generated at the nickel electrode. This oxygen diffuses through the separator and reacts with the cadmium electrode to form cadmium hydroxide. This causes a lowering of the cell voltage which can be used to detect the end of charge. This so-called minus delta V/ delta t bump that is indicative of end-of-charge is much less pronounced in NiMH than NiCad, and it is very temperature dependent.
As the battery reaches end-of-charge oxygen starts to form at the electrodes, and be recombined at the catalyst. This new chemical reaction creates heat, which can be easily measured with a thermistor.. This is the safest way to detect end-of-charge during a fast charge.
Nickel cadmium battery chargers should cut the charge off when the temperature exceeds the maximum charging temperature, typically 45 degrees C for a controlled fast charge, and 50 degrees C for an overnight or fast charge.
6.4v 0.6A nicd battery charger |